यदि $\Delta_{1}=\left|\begin{array}{ccc} x & \sin \theta & \cos \theta \\ -\sin \theta & - x & 1 \\ \cos \theta & 1 & x \end{array}\right|$ तथा $\Delta_{2}=\left|\begin{array}{ccc}x & \sin 2 \theta & \cos 2 \theta \\ -\sin 2 \theta & -x & 1 \\ \cos 2 \theta & 1 & x\end{array}\right|, x \neq 0$; तो सभी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए
${\Delta _1} - {\Delta _2} = - 2{x^3}$
${\Delta _1} + {\Delta _2} = - 2({x^3} + x - 1)$
${\Delta _1} - {\Delta _2} = x\left( {\cos \,2\theta - \cos \,4\theta } \right)$
${\Delta _1} + {\Delta _2} = - 2{x^3}$
यदि $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$ है, तो $\lambda, \frac{\lambda}{3}$ किस समीकरण के मूल हैं ?
धनात्मक संख्यायें $x,y$ और $z $ के लिये सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ का आंकिक मान है
निम्नलिखित समीकरणों का $a$ के कितने मानों के लिए कम से कम दो अलग-अलग हल $(Solution)$ है ?
$a x+y=0$,$x+(a+10) y=0$
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $
यदि $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$ $5x + 10y + 5z = 11$, तो $x$ का मान है